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PARAMETRIC STATE SPACE STRUCTURING

GIANFRANCO CIARDO* AND MARCO TILGNER t

Abstract. Structured approaches based oil Kronecker operators for the description and solution of

the infinitesimal generator of a continuous-time Markov chains are receiving increasing interest. However,

their main advantage, a substantial reduction in the memory requirements during the numerical solution,

comes at a price. Methods based on the "potential state space" allocate a probability vector that might be

much larger than actually needed. Methods based oll the "actual state space", instead, have all additional

logarithmic overhead. We present an approach that realizes tim advantages of both methods with none of

their disadvantages, by partitioning the local state spaces of each submodel. We apply our results to a model

of software rendezvous, and show how they reduce memory requirements while, at the same time, improving

the efficiency of the computation.
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1. Introduction. Markov chains can be used to model complex systems exhibiting stochastic behavior,

but their numerical solution is limited by the high memory requirements. For continuous-time Markov chains

(CTMCs) in particular, three large data structures need to be stored in a conventional solution approach:

the state space T, the transition rate matrix R, and the desired solution vector (e.g., the steady-state

probabilities 7r). Of these, R is the largest even when using sparse storage, since it contaius as many

nonzero entries as the number of possible state-to-state transitions.

Thus, nmch work has been performed in tile last decade on techniques to store R implicitly using

Kronecker operators, starting with the "synchronized" stochastic automata of Plateau [15, 16, 19]. Buchholz

[1] used a similar idea for Markovian closed (asynchronous) queueing networks, and Takahashi [22] used it for

open queueing networks with communication blocking. Donatelli [10, 11] adapted the approach to generalized

stochastic Petri nets (GSPNs), introducing the "superposed GSPNs (SGSPNs)", further extended by Kemper

[i2].
In these approaches, K submodels are "composed" through some rules. For example, in the SGSPNs,

individual submodels having an underlying ergodic CTMC are composed by merging trazisitions in two or

more submodels, so that they conceptually fire at the same time. The state space :r of tile overall model is a

(possibly proper) subset of the cross-product _ of the state spaces of the individual submodels. Analogously,

the matrix R is a submatrix of a matrix 15_obtained by combining a set of small matrices that describe the

effect of an event on an individual submodel, using Kronecker products and sums.

The possibility that the "potential" state space _ might contain states not in the "actual" state space

7" has been addressed in two f'undamentally different ways:

• One can ignore the distinction between _ and T, and write algorithms that use a vector fr of size
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ITI instead of a vector z¢ of size T, and iterate on 1_ [15, 16, 19, 1, 17, 21]. This approach is simpler

and does not require to store the state space 7", but it might unnecessarily fail for lack of memory

when [3[ _ [T[.

• If a vector 7r of size [7"[ is used instead, the iterations of the numerical methods must be restricted

to operate on the correct submatrix R of 1_. This can be done by explicitly storing the state space

7-, and then using the entry l_,.i computed through Kronecker operations, if, and only if, both i

and j are reachable states in T [12, 24, 9]. This involves searching for states in the data structure

storing T, resulting in an additional logarithmic overhead.

In this contribution, we explore a third possibility, which in the best case achieves the performance of

the simpler methods based on T while using even less memory than those based on 7-. The approach uses a

partition of each local state space in such a way that either T or a superset T of it (hopefiflly much smaller

than 7") can be encoded in a negligible amount of space. Furthermore, the question "is this state reachable"

can be answered in O(K) time, that is, by simply looking at its components, without having to perform a

logarithmic-time search.

While finding the "best partition" that will minimize the memory requirements is unieasible in general,

we show how the presence of invariants in the model can be used to guide us toward a "good partition" that

can be used by our algorithm.

The resulting block-partitioning of the matrix R is analogous to that introduced by Buchholz [2, 4] for

the solution of "asynchronous systems", essentially restricted GSPN models composed of submodels where

the interactions are not due to merging transitions but to a transition having input(s) in one submodel and

output(s) in another. Also related to our work is a recent contribution by Campos, Silva, and Donatelli [5]

on "stochastic deterministically synchronized sequential processes".

Our approach, however, is not restricted to a particular pattern of interaction between submodels, and

can cope with "imperfect" partitioning, which might result in the most efficient approach in practice, as we

show in our example.

The paper is structured as |ollows. Section 2 describes the notation used and recalls the definition

o_' Kronecker product and sum. Section 3 defines high-level models and their underlying CTMCs. Then,

Section 4 describes how both the state space and the transition rate matrix can be described in a structured

way from information "local" to each submodel, and recalls the main ideas of the potential and actual

state-space-based solution approaches. Sections 5 and 6 introduce our main idea, the partition of local state

spaces, and discuss how to find a good partition in practice. The effect of applying the partition to R is

discussed in Section 7, while the resulting equations for the solution of the CTMC are derived in Section

8. Finally, Section 9 uses the new technique to study a software tasking system and details the timing and

memory requirements under alternative solution approaches.

2. Notation. Except for the sets of natural numbers, $V = {0, 1,2...), and real numbers, _i_, all

sets are denoted by upper-case calligraphic letters (e.g., A'); (row) vectors and matrices are denoted by

lower- and upper-case bold letters, respectively (e.g., x, A); their entries are denoted by subscripts (e.g., xi,

A_,j); a set of indices can be used instead of a single index, for example, Ax,y denotes the submatrix of

A corresponding to set of rows 2d and the set of columns J). We also index families of like-quantities with

subscripts or superscripts (e.g., xl or x _) and use a shorthand "range" notation to indicate sequences of them

(e.g., X[1,n ] _- Zl,...,Xn)

rI(A) denotes the number of nonzeros in matrix A. Onxm and ln×rn denote matrices with n rows and

m columns, having all entries equal 0 or 1, respectively, while In denotes the identity matrix of size n × n;



the dimensions of these matrices Inay be omitted when they are clear h'om the coutext. Given a vector x,

diag(x) is a square matrix having vector x on the diagonal and zero elsewhere.

Given a n × n matrix A, rwsm(A) = diag(A. 1,L×1) is a n x n matrix having the diagonal equal to tile

sums of the entries on each row of A, and zero elsewhere.

K AkWe recall the definition of the Kronecker product A -- (_k= 1 of K rectangular matrices A k C _': × c_

using the convention that the rows and columns of both A and the matrices A k are indexed starting at 0.

Let n_' = 1-I_=t nk. If we assume a mixed-base numbering scheme, the tuple ill,K] corresponds to the row

K • r K and vice versa; the interpretation of a column indexindex (... ((il)r2 + i2)rz''')rK + iK = _a=l ia a+l,

J[1,K] is analogous, except that ca must be used instead of ra. Then, the generic element of A E £R"_ ×c_ is

given as

= A 1 - A? .... A K .(2.1) Ai,j ---- Ai[1,KI,J[I,K] 'l,.n _,.Ta ,K,JK"

K AaTim Kronecker sum _a=l is defined, only for square matrices A a E _x_,_A:×,_:, in terms of Krouecker

products, as

K

E lm®'"®InA, _®A a®I,_k+_®'''®InK.
k=l

We are interested in algorithms that exploit sparsity. For the Kronecker product, the number of nonzeros
K

is simply r/(_a=t A a) = [Iff=l r](Aa) •

Table 2.1 summarizes the symbols used in the paper.

3. Description and solution of a Markov model. We assume that the Markov model is expressed

in a structured high-level formalism as a collection of K submodels roll,K]. These define:

• A set of potential states, T xK 4-a where q-a = {0, .., na 1} is the set of na potential local-_- k=l _ , . --

states for mk.

• A set of events, E.

• An initial state, i_l,u ] E _'.

• Rules to define whether an event e E C is active in a state i[1,U ] E T, act(e,i[1,K]) E {True, False},

• its rate of occurrence when active, rt(e, i[ngl) > 0,

• the state obtained when e occurs in state ill,U], new(e, ill,g]) E "]'.

From these, we can build:

• A set of reachable states having an exponentially distributed holding time, or state-space, T, and

the sets of local state-spaces T a, simply the projection of T on its k-th component. Without loss of

generality, we assume from now on that T a = q-a.

• A transition rate matrix, R E 17i_I:rlxl_rl, describing the transition rates between reachable states.

• An initial probability vector, It(0) E _ I:rl.

7" can be generated using a state-space exploration algorithm, such as BuildRS, shown in Fig. 3.1,

which terminates iff 7" is finite. T and/a' are the sets of states explored so far, or found but Imt yet explored,

respectively. If/g is managed as a FIFO linked list, BuildRS performs a breadth-first search of the graph

implicitly defined by the model. The matrix R can be generated at the same time, or in a second pass, once

17"1 and rj(R) are known, so that an efficient sparse row-wise or column-wise format can be used [14].

The solution algorithms we discuss index the states according to "lexicographic order", ko : 7" --+

{0,..., ITI - 1}, such that _(i[1,g]) > _(J[1,K]) iff ill,K] follows J[_,K] in a lexicographic comparison. This



TABLE 2.1

Symbols used in the paper

Symbol Meaning

K Number of submodels

mk k-th submodel

nk Size of potential local state space for 7nk

n_ l-Ik=t nk

T, T Potential, actual state space

_-k, T k Potential, actual local state space for rnk

q(i[1,K]) Lexicographic position of i[1,g]

g, £k, g. Events: overall, local to ink, synchronizing

1_, R Transition rate matrix

R k Local transition rate matrix for mk

W k,z Weight matrix for synchr, event el oil mk

_', 7r Steady state probability vector

l_, h Expected holding time vector

Pk Number of classes in the partition of T k

pk {0,..., Pk - 1}, class indices

T k:v p-th class in the partition, p E 7 'k

nk:p ITk:Pl, size of tile p-th class

7_ Relation defined on the sets pk

B Blocks defining R

i BuildRS(in: g, act, new;

1. T 0;

2. /4 -o .{_[I,KI}'
3. while/.4 _ 0

4.

5.

6.

7.

8.

9.

out: T);

"remove the first state ill,K] from L4";

7 T U {i[1,KI};

for each el • _ s.t. act(el,i[1,Kl)

J[1,K] new(el, ill,K]);

if J[1,gl ¢ 2- U 5/then

U _¢ U {JI1,K l };

FIe;. 3.1. Algorithm BuildRS

assumes that states (or their encodings) are somehow comparable. Furthermore, we extend • so that,

Vi[I,K I • _ \ 7", _(i[1,KI) = null.

We focus on the computation of the steady-state probability (row) vector lr E J_ ITI satisfying

(3.1) z¢. (R - rwsm(R)) = 01xITI and It. llTixl --- 1,

but the techniques we discuss are equally applicable to the computation of transient and cumulative measures

[6]. We note that the indices of lr and R correspond to the reachable states through the mapping _, that



is,thesteady-stateprobabilityofstatei[1,K] E 7. is stored in position _(i[1,K]) of 7r.

There are two difficulties in solving the system of linear equations (3.1). First, models of interest can

describe CTMCs of enormous size, preventing us from using direct methods such as Gaussian elimination,

which cause excessive fill-in. We are then limited to iterative methods using sparse storage schemes fbr R, but

even these methods are memory-bound when applied to realistic examples. Furthermore, the convergence

rate of iterative methods can be quite poor when applied to stiff models, such as those arising in reliability

analysis.

In the following section, we recall results from [8, 9, 3] showing how the state-space 7. and the matrix

R can be represented in compact form using Kronecker operators, thus reducing the storage requirements,

but possibly at the cost of execution efficiency. Then, we show how, by an appropriate partition of the local

state-spaces, we can achieve better performance, while further reducing the storage requirements.

4. Structured description of 7. and R. In [8], we showed how 7. can be stored in an efficient

dynamic multi-tree data structure during the execution of BuildRS. After 7" is known, this data structure

can be further compressed by using arrays instead of dynamically balanced search trees, as shown m Fig.

4.1.

Using the data structure in Fig. 4.1 to compute _(i[1,K]) is straightforward:

1. Use binary search to find il in the array for ml and follow the pointer to the array for m2.

2. Search i2 in the array for m2 (only the grey portion of size _< n2 between the pointed position and

the next pointed position must be considered). If found, follow the pointer to the array for m3.

3. Continue to follow the pointers until either a local state ik is not found (implying that i[1,K] ¢ 7.),

or until ig is found (implying that i[1,K } E 7" and that its lexicographic position k0(i[1,K]) is the

same as the position where i K was found in the array for inK).

Assuming that the portions of the arrays searched at each level are of comparable size, the overall

complexity to compute _(i[1,K]) is O(1og 17.1), the same as if 7" were stored in a single search tree or in a

contiguous array. However, there are several advantages:

• The memory requirements to store 7" using this data structure can be as low as O([log ngl " 7")

bits, as long as, for any sub-state i[1,K-1], the sets of local states {ig E 7"K : i[1,K] E 7"} are either

empty or reasonably large. In Fig. 4.1, this requirement implies that the last array, for inK, should

be substantially larger than the array for rag-l, and so on. The straightforward data structure

requires instead 0(_= 1 [log nk] - 7") bits.

• Only local states are compared at each step, not global states as in the straightforward algorithm.

• It is often possible to realize that i[1,K] _ 7" without having to consider all its components (on the

other hand, it is impossible to determine that i[1,g] C 7" before examining the array for inK).

• After searching for i[I,K], a search for a state with the same first k components can reuse the work

_]ready performed to find the path corresponding to i[1.k], and start directly at the array for mk+l.

This is the key to lowering the complexity of the vector-matrix multiplications presented in [3].

In practice, our implementation automatically uses 8-, 16- or 32-bit indices for the local states of ink,

depending on the value of nk. For most models, ng _ 2s or 216, hence we can store T in little over 17.1 or

2IT I bytes using the data structure of Fig. 4.1.

Following [9, 3], we assume that the activation, rate, and effect of an event can be determined in a

"distributed fashion". In other words, this implies that the effects of the various submodels on the event are

independent of each other. Formally, given an event el C E:



Submodelmr:

r_: local states I

F--]: pointers I

Submodel m2:

OQO 000 000 000 tOO

IlllllllMB llllllll
'lffifj,K1)

FI_:;. 4.1. Ei_cient storage of T.

• el is active in i[1.K ] iff it is "locally active" in each local state:

(4.1) act(el, ill,K]) = actl't(il) A . . . A actg'l(iK )

where act k't : 7rk --_ {True, False} is derived from the model.

• The effect of the occurrence of el oil a local state does not depend oil the other local states:

(4.2) new(el, i[1,K]) = (newl't(il), ... ,newK't(iK))

where new k't : T k _ 7 "k is given by the model.

• Finally, the rate of an active event et in state i[1,K] can be expressed as

(4.3) rt(et, i[1,K]) = At . wgtl't(il) ... wgtK't(iK)

where At C J_i_+ is a constant "reference rate" and wgt k't : T k ---* _+ are (dimensionless) scaling

weights, also given by the model.

If the activation, effect, or rate of an event e I are not dependent on a local state ik, we let act k't =_ True,

new k'l = I, the identity function, and wgt k'l _ 1, respectively.

We can then partition the set of events £. An event el is local to ink, we write et E £k, if its activation,

rate, and effect are determined by, and limited to, the local state ik of rnk alone:

£_et E £ : Vk I _ k, act k''l =- True

wgt k ',t }
A new k''t-I A --1 .

The events in

are instead said to be synchronizing.

I</<L=I£* I.

K

E'=E\ U,r
k=l

For notational convenience, these are numbered first: et E E* iff



It hasbeenshownin [9](butseealso[15,16,1,11]for morerestrictivestatements)that,whenthe
conditionsspecifiedin (4.1),(4.2),and(4.3)hold,R canbeexpressedas

K L K \

(4.4) Grk+ A,.®w/c,t) ,
/C=I t=l k=l / 7-,T

where

• I_. is a 7" × T matrix that can be described as the sum of Krotmcker products and sums of much smaller

matrices, and has the fundamental property that its entries in the rows and columns corresponding

to states in 7" coincide in value with those of R.

• W k't is a nk × nk "weight" matrix defined as

{ wgt/cJ(i) if act/c,t(i) = True
w, J = and3=

0 otherwise

• R k are the local transition rate matrices describing the effect of local events:

Rk= Z At.W k't.

clE£ _

This description of R can then be used in iterative methods such as Jacobi, Gauss-Seidel, or their

relaxation versions [3], avoiding the large storage requirements for R entirely. Only local matrices such as

W kJ and R/c need to be stored, and their memory requirements are small even for reasonably large K and L.

The only remaining memory constraint is the storage of the iteration vector(s). However, these approaches

based on Kronecker operators.still suffer from important limitations, which we now address.

4.1. Implementations based on T. In the first implementations that appeared in the literature

[1, 15, 16, 18], a vector _ E/t_ n[ is used to store 7r. In it, only the entries corresponding to states i(t,K] E T

are actually used, while the remaining entries, corresponding to potential but not reachable states, are always

zero.

All Kronecker operations are performed ignoring the distinction between reachable and potential states

(testing for zero can still be used to avoid some, but ,lot all, useless computations). The main advantage of

this approach is that, given a state ill,K], the position of its corresponding entry in/r can be computed in
K

O(I() operations, as Y]/c=l ik • nK+x.

In addition, exploiting the structure of the matrix resulting from a Kronecker product, the vector-matrix

product :_-((_kK=l A/c) ca,, be computed in O(nl K. K (I-I/c=1 rl(A/c))._--_-k=l r/(A/c)/nk) operations, instead of O K

This result can be obtained by extending the Plateau-Stewart Theorem 9.1 of [20] to tile case where the

matrices A k are stored with an appropriate sparse format.

Unfortunately, the practical impact of this elegant result might not be as great as one could hope

because the matrices involved are often "ultrasparse", with r/(A/c) at most slightly larger than nk. Assuming

e nonzeros per row, the complexity is then O (nl K. Ke) versus O(n_.e K) for the straightforward multiplication,

which is then a better choice whenever e < e_. For example, when e = 1, application of the Plateau-

Stewart Theorem results in a complexity O(n_. K), worse than the O(n K) complexity of the straightforward

multiplication (of course, the memory savings might still justify using a Kronecker approach).

4.2. Implementations based on T. Alternative implementations that operate directly on the vector

7r, thus avoiding O(n_) memory requirements, have been recently proposed [9, 3, 12]. This is an important

advantage whenever ITI <<Iq-I,often the case in practice.



However,thesememorysavingscomewithaprice.WhenusingT, a state i[1,K] call be easily associated

with its index in #, while now we must compute _(i[1,g]) to obtain the index ill lr, using a logarittunic

search in 7". A simplistic implenmntation of the vecto>matrix product

has then complexity

if performed "by rows", as needed for a Jacobi-style iteration, or

o ,/ @ A k . log 17"1
k=l q-,_-

if performed "by columns", as needed for the faster Gauss-Seidel-style iteration (the difference is that spurious

entries from states in 7" \ T to states in T might be encountered in the latter case).

In [3], the logarithmic factor log 171 is reduced to lognK with the help of the data structure of Fig. 4.1,

but it is not completely eliminated.

5. Partitioning the local state spaces. We now demonstrate how an appropriate partition of the

local state-spaces call achieve the advantages of the methods based on either the potential or the actual state

space, without many of their drawbacks.

Partition each local state space T k into Pk classes

P_-I

7"k = U 7-k:p,

p=0

let nk:p = ITk:Pl be the number of states in class 7-_:P, and define ?_k = {0,..., P_, - 1} to be set of indices

corresponding to the classes in the partition. We can then define a relation "R c x/¢ _k- k=l_ over these sets of

indices. Two interesting cases arise, which we denote as perfect and imperfect partition, respectively.

5.1. Perfect partition. Assume that _ can be defined so that

(5.1) P[1,K] E "R.=>T _D X/c=I_K-rk:/,_ and

(5.2) PI1,K] ¢- "R.::_T ¢3 ^k=l--

Then, this means that the actual state space 7" can be described very compactly as tile set of states contained

in tile cross-products of the classes corresponding to the elements of 7_:

T _ U _ K ,,-Fk:pl,:^k=l-- •

p[1,KIET_

Note that, since the Pk classes constitute a partition of T k, these cross-products constitute a partition of T,

that is, given two tuples P[1,g} and q[1,K] differing in at least one component, the cross-products x _=1 Tk:P_:

and x K mk:,_ contain disjoint sets of reachable states.k= 1 --

Hence, we can encode the entire state space T using only a description of the local states for each

K psubmodel plus a boolean vector of size l-Ik=l _, to describe the relation T_. We call this a "level-l" vector.



Submodelm V 0 1 2

Submodel m2: 0 l 2 3 0 1 2 3 0 I 2 3

Index: 0 1 2 3 4 5 6 7 8 9 I0 11

ol,lo],l,lolo],l,l,lol,

FiG. 5.1. An example of perfect partition.

Of course, R can always be found, in the worst case by defining a partition of T k where each state is in

a class by itself, but this results in R = T and the level-1 vector has size ITh as the one used by Kemper

[12]. On the other hand, when 7" = T, (5.1) and (5.2) are trivially satisfied by defining a partition of T k

into a single class: Pk = 1 and T k = T k:°. In this case, T_ = {(0,... ,0)}.

The case of practical interest is when tile actual state space T is a strict subset of the potential state

space 3, but 1 < Pk << n_. Then, large savings can be achieved with respect to traditional techniques to

store the state space [8] or to Kemper's boolean vector.

As an example, consider a model with two submodels, whose local state spaces can be partitioned as

T 1 = T 1:° t2 T 1:1 t2 T 1:_ and T 2 = T 2:° U T 2:1 t_JT 2:2 t2 T _:3, in such a way that, V(il, i2) E T 1 × 7Y_

(i1,i2) E T¢==_(il E TI:°Ai2 E

(il E T 1:1Ai2 E

(ilET l:2Ai2E

T _:10 T 2:a) V

T _:° t_JT 2:a) V

T 2:° O T 2:1 0 T 2:a)

Then, the 12-element boolean vector shown in Fig. 5.1 can be used to encode the state space regardless of

the sizes of the classes in the partitions (of course, the local state spaces for each submodel still need to be

stored explicitly).

To determine wtmther a given state i[1,h'] is reachable, we simply obtain each index pk of the partition

T _::p_ containing the local state ik, we compute the mixed-base value of pll,h-],

)
k=l /=k+l

and we check whether there is a "1" in the corresponding position of the boolean vector describing _. The

complexity of this test is then O(K), independent of the size of T.

5.2. Imperfect partition. At times, the conditions in (5.1) and (5.2) might hold only for excessively

fine partitions of the local state spaces, or maybe only in the limiting case P_ = nk, where each state is in a

class by itself. To avoid large storage requirements for R, we might relax requirement (5.1), substituting it

with

v K *T'k:pk
(5.3) Ptl,K] _ _ CI ^k---l-- -_ O

which, together with (5.2), simply results in

(5.4) PtLKI e _¢:=¢1-_ ×_=_T k:p_ # 0

Then, for each P[I,K] _ 77_, we need to encode which states in ×_=I:T k:p_: are actually reachable. One way
K

of doing this is to associate a "level-2" boolean vector of size l-Ik=l nk:p_ to each element P[1,K] _ 7_. This



Submodelm I: 0

Submodelm2: 0 I 2 3

Index: 0 1 2 3 4 5 6

o,,,o,i,jo,o
S ubmodel m !: b

Submode|m2: f g h f g h

Index: 0 1 2 3 4 5

ol,lolot,ll

1 2

0 1 2 3 0 I 2 3

7 8 9 I011

I,

Submodel m V c d e

Submodelm2: f g h f g h f g h

Index: 0 1 2 3 4 5 6 7 8

ol,l,lOlll,l,lol,

Fro. 5.2. An example of imperfect partition.

approach is advantageous with respect to the filll boolean vector employed by Kemper [12] provided that

tile overall memory required by the level-1 and level-2 boolean vectors is substantially less than 131 bits. A

g p_condition for this is that the level-1 vector used to encode T_ has many "holes", I_1 << YIk=l k. However,

we nmst also require that these holes do not correspond only to small classes in the partition.

This is apparent by considering the following extreme case: each local state space T k is partitioned into

two classes, T k:° with one state and T _::1 with nk - 1 states, and

7¢={(1,0,...,0),...,(0,...,0,1),(1 .... ,1)}.

K 2K"Then, IEI = K + 1 << I-Ik=l Pa = However, the storage for the boolean vector corresponding to the
K

element (1,..., 1) of 7_ would still require 1-Ik=l (nk - 1) = O(]31) bits.

Continuing our example, assume now that a "1" in the 12-element boolean vector simply means that

some, not necessarily all, of the corresponding global states are reachable. Then, the two-level approach

shown in Fig. 5.2 could be used. In the figure, only the level-2 boolean vectors corresponding to the level-1

values (1,0) and (2,0) are shown, assuming that T 1:1 = {a,b}, T 1:2 = {c,d,e}, and T 2:0 = {f, 9, h}. For

example, the entries in the level-2 boolean vector [010011] pointed by the level-1 value (1,0) tell us that only

states (a, g), (b, g), and (b, h) are reachable among those in T 1:1 x "l"2:°.

5.3. Comparison with alternative approaches. Two competitive alternatives proposed to store

the state space T are a single boolean vector of size 131 [12] and the multilevel search data structure of

Fig. 4.1, requiring little over IT I[lognK1 bits [8]. Prom a memory standpoint, the latter is superior when
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[_r[/[TI> [lognK]. However, it has higher execution overhead, log IT] instead of K, when used to determine

whether ill,K ) E T.

In the perfect partition case (assuming non-trivial partitions), the approach we just introduced can

use negligible amounts of memory while, in the imperfect partition case, it call have worst-case memory

requirements similar to that of Kemper's single boolean vector approach, although one would hope that it

would perform much better than that in practice. In either case, the execution complexity to search for a

state is only O(K), due to the direct access capabilities of the level-1 and level-2 boolean vectors.

Indeed, one could simply consider our storage approach as a specialized way to compress a boolean vector

of size IT] by eliminating entire sets of zero elements at a time. If, for a particular P[1,K1, the level-2 boolean

vector happens to contain only l's (if 1r D x K Tk..pk _ we could treat this as a special case and avoid storing-- k=l /,

it altogether. We ignore this possibility, although it could be exploited in practical implementations. Clearly,

the perfect partition case corresponds to the situation where none of the level-2 vector must be allocated

explicitly.

We also observe that there is no reason to limit the approach to two levels. The information conveyed

by a level-2 boolean vector could be stored by further partitioning the classes of local states it corresponds

to, thus introducing a level-3 vector, and so on.

Ultimately, tile only limiting factor in this process is the algorithm to decide whether and how to filrther

partition a set of local states. Section 6 addresses this concern in practical situations.

6. Determining a good partition. We can formulate the problem of finding the best perfect partition

K k
as a minimization problem. Given T1,... ,T K and T C_ xa=lT ,

K

Minimize YI Pk
k=l

subject to Vk, 1 < k < K,

Tk:0,... ,2zk:Pk-1 is a partition of T _',

K
Vp[I,KI e Xk=l{0,...,Pk - i},

For an imperfect partition, the quantity to be minimized must include the space for both the level-1 and

the level-2 boolean vectors:

(6.1) Minimize

subject to

The second component of (6.1) is

vectors,

(6.2)

K K

IIP + :S IIn,: ,
k=l pil,K1E_ k-----1

Vk, 1 < k < K,

Tk:°,... ,T k:P_-I is a partition of T k,

T_C K {0,.. Pk-1},Xk= 1 • ,

K
Vp[1,K] E Xk=I{0,.--,Pk -- 1},

P[1,K] E 1_¢==> (T (h " K _rk:p_Xk= 1- # O)

minimized when the number of "0" entries in the level-2 boolean

P[l,h'] E_ k=l

11
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FIG. 6.1. A simple fork/join model.

is minimized. Indeed, for a perfect partition, (6.2) is zero.

The search for the optimal partition is then equivalent to an integer programming problem, which is too

complex for realistic applications.

We then require a user-defined state-dependent partitioning function

partk : Tk ___}pk

for each submodel ink, assuming that the decomposition of the model into K submodels is defined a priori.

In most cases this is naturally given by a modular modeling approach, such as in top-down or bottom-up

system design (see also [7] Ibr a definition of a similar partitioning function used tor a completely different

purpose, the distributed generation of the state space).

Then, tile classes of the local state space partition T k:p are

T k:p = {ik ]p = partk(ik)}

and the resulting relation 7_ is

T_= U {(partl(il)'''"partK(iK))} •

iit,,,_] ET

In other words, we try to find appropriate functions part k to achieve a (hopefully perfect) partition. For

example, in tile application presented in Section 9, we will use the total number of "tasks" within a submodel

(i.e., its load) as the parameter defining our partition, so that only synchronizations between submodels can

result in load changes in the involved submodels. An analogous definition is possible whenever a concept of

load can be clearly defined at the submodel level.

For GSPN models having an irreducible underlying Markov chain, this might simply reflect the existence

of invariants in the model (sets of places for which a weighted sum of tile number of tokens in them is a

constant [13]).

For example, consider the simple fork-and-join model of Fig. 6.1. Local states of submodel mk are

expressed as triplets (#(akl)#(ak2)#(ak3)), where #(a) indicates the number of tokens in place a. The

local state spaces for the two submodels are exactly the same,

T 1 =T 2 = {(002),(011),(101),(020),(110),(200)}.

However, not all nl • n2 = 36 combinations of local states for ml and mu are reachable.

12



In this GSPN, there are four p-invariants:

111 : _(a11) -F #(a12)

I1_ : #(a11) + #(al'_)

/21 : #(a_l) + #(a22)

/22 : #(a21) + #(a22)

-}- :_(a13) ---- 2,

+ #(a2z) = 2,

A- #(a13) ---- 2,

+ #(a23) ----2.

Of these, In and /22 are "local" invariants, they only affect the reachable local states of ml and m2,

respectively. The other two "global" invariants /12 and I21, though, link tile reachable local states of ml

and m2.

In this simple case, ttle invariants tell us exactly which combinatioim are reachable:

#(a23) : 0 :=:b #(all) at- #(a12) : 2 =::b #(a13 ) -_- 0,

#(a23)----1 =_ #(all) -F #(a12 ) ----1 ==]_ #(a13 ) ----1,

#(a23 ) : 2 =:b :_(all ) J-#(al2 ) : 0 :=b #(a13) : 2,

hence, any global state (il,i2) E T 1 × T 2 of the form ((#(all), #(a12), #(al3)), (#(a21), #(a22), #(a23)))

satis .lying =_iL(al3) ----#(a23) is reachable (and no other is):

T = {((002), (002)), ((011), (011)), ((011), (101)),

((101),

((020),

((110),

(011)), ((101), (101)), ((020), (020)),

(110)), ((020), (200)), ((110), (020)),

(110)), ((110), (200)), ((200), (020)),

((200), (110)), ((200), (200)) }.

Now, if we think of places ak3 as "idle" and akl and ak2 as "busy", we can define the load as the number

of tokens in the busy places, and define the partitioning functions

p_t k =-#(ak_) + #(ak_) = 2 - #(_:3).

This choice partitions the local state spaces T k into Pk = 3 classes each,

T k:° = { (002) },

T k:l = { (011), (101) }, and

T k:2 = { (020), (110), (200) },

Given our choice of partition for the local state spaces, we obtain T_ = {(0, 0), (1, 1), (2, 2)}, resulting in

a perfect partition.

We should note that our choice of local partitioning functions is such that pa','t _ : T _: --* T _k, for each

submodel m_,, 1 < k < K, is invariant with respect to the occurrence of any local event:

VeiEg k, Vik ET k,

(6.3) jk = newk't(ik) _ partk(ik ) = partk(jk)

while synchronizing events always cause at least one partitioning function to change value:

Ve! E _'*, Vi[LK] 6 "T,

(6.4) ill,K] = new(el, i[1,K]) _ Sk, partk(ik) 7£ partk(jk)

13



7. Block-partition induced on R. The partitions of the local state spaces just introduced can be

used to decompose the matrices I_ and R into blocks B corresponding to the sets of states identified by the

tuples P[1,K] E 7"4..

7.1. Perfect partition. In this section, we assume that the user-defined partitioning functions satisfy

constraints (6.3) and (6.4). In other words, we assume all and only synchronizing transitions change the

load parameter of the submodels. This does not imply a loss of generality, since we can always treat a local

transition as if it were a synchronizing one. Thus, the matrices R k and W k'l can be block-partitioned as

R k:° 0 0

0 R k:l 0

0 ... 0 R k:P_:-:

and

wk,l:O,O wk,I:O,1

wk,l:l,O wk,l:l,t

wk,l:P_-l,0 wk,l:P_-l,1

wk,l:O,P,_:--l

wk,l:l,P_-i

• . wk,l:P_,,-1,P_-I

respectively, where

• The off-diagonal blocks in R k are zero due to constraint (6.3).

k
• Rk:P = aT-_:,, 7-_:,, and

• Wk,I:P,P ' : W k,l
_-k:l, ,Tk:Pl •

Just as we defined a lexicographic order • on T, we can define one on the tuples in R:

n: n -_ {0,..., Inl - _}.

Then, the transition matrix R carl be rewritten in a block-structured fashion as

(7.:)

B ° 0

0 B 1

O " " •

0

Bl,O

Bl_l-l,o

''' 0

0

0 B {hI-:

B0,1

0

BITq- 1,1

+

0

where tile blocks are defined as
K L K

B b _ Rk:P_, _ --Y-__ _ x_trk l:p_. p_• = t? AI_ZX) *v ' }

k=l 1=1 k=l

L K

1=1 k=l

and b = f_(PN,KI)__ and b r = f/(P_t,K])', Note that the off-diagonal blocks of tim first term in the right-hand-

side of Eq. 7.1 are zero because of tile structure of R k while tile diagonal blocks of the second term are
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zero because of constraint (6.4). If our assumptions were violated, we simply would have to allow for the

possibility that these blocks might be nonzero instead. Note also that rectangular matrices are involved in

!
the Kronecker product of matrices W k' :Vk,Pk, unlike Eq. 4.4, which uses only square matrices. However,

this does not impose any restriction or complication on the solution algorithm.

Continuing with our fork-and-join example of Fig. 6.1, tile blocks of the transition matrices R k and W k'_

are

[oooj
Ak 0 ' 0 Ak 0

Then,

w,,o:o,x=[o1],

w,,,1,o:[l10 '

wk,0:l,2 = [ 0 1 0 ]001 '

W k'a:2d = 0 1 •

O0

t_

B ° B °,1 0 ]
Bl,O B 1 B1,2 =

0 B _'1B 2

(7.2)

0 0

,'_3 0

0 A2

0 A_

0 0

0 As

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 Ao

0 0 0

0 0 0

0 0 0

A1 A2 0

0 0 0

A30 0

0 0 0 0 0 0 0 0 0

0 0 0 0 Ao0 0 0 0

0 0 0 0 0 Ao0 0 0

0 0 0 0 0 0 0 Ao0

0 0 0 0 0 0 0 0 Ao

000000000

A20 0 0 0 0 0 0 0

0 A20 0 0 0 0 0 0

AIO 0 0 0 0 0 0 0

0 AIO A20 0 0 0 0

0 0 AIO A20 0 0 0

0 0 0 At0 0 0 0 0

0 0 0 0 AIO A20 0

0 0 0 0 0 AIO A20

0 0 0

0 A30

0 0 Aa

0 0 0

0 0 0

0 0 0

0 0 0

As we can easily dmck, all 14 reachable states of T are properly addressed and no unreachable state is

created by the Kronecker products within the blocks of matrix R.

We also observe that the block-tridiagonal form of R is due to the fact that, in ore" case, synchronizing

events can only decrement or increment the value of the local partitioning functions by one, a fairly common

occurrence that could be further exploited in implementations of our method.
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7.2. Imperfect partition. In the case of imperfect partitioning, tile blocks for the transition matrix

R ill Eq. (7.1) must be restricted to the sets of reachable states:

• (Bb)7-nx_tTk:,,,:Tnzff:tT_:p,: ,

(Bb,b'_
\ / Tn x _=_T_::I,_,Tn × _=1T _ _'

with b = _(P[1,K]) and b' = _(PI1,K])' as before.

Given again the fork-and-join model of Fig. 6.1, assume that we partition each local state space 7- k,

k: = 1,2 into Pk = 2 classes as:

7- _':U : {(002), (011), (101)}

7- '_':1= {(020), (110), (200)}

This partition is imperfect since T k:° includes local states with different local loads (values of #(ak3) for

submodel mk), while it is necessary to impose the global constraint #(a13) = #(a23) to achieve perfect

partitioning (this is clearly not a good choice, given the existence of a perfect partition, but it is useful for

illustrative purposes).

The blocks of the transition matrices R _ and W k,t, for k = 1,2, are then:

[00 1 [0001R k:°= Aa 0 0 , R k:_= Ak 0 0 ,

0 A_,. 0 0 Ax: 0

001]
w_:O:O,O= 000

000

[ooo]W k'°:°'t = 010

001

With the new choice of partition for the

restrict the blocks of matrix

000]
W _'3:°'° = 100 ,

000

[OLO]W _:'3:1'° = 001 .

O00

local state spaces, we obtain T_ = {(0, 0), (1, 1)}. Then, if we

I B0 BO,1 ]Bl,O B 1

to the reachable states only, we obtain the same matrix R as in Eq. (7.2), but with coarser blocks. More

precisely, the original blocks define 9 × 9 matrices, which are reduced to a 5 × 5 matrix for block B °, a 5 × 9

matrix for B °'1, and a 9 × 5 matrix for block B 1'°, while B 1 remains a 9 × 9 matrix. Even if imperfect, this

partition is still more memory-efficient than working directly on the potential state space of size {T{ = 36.

8. Equations for the solution of the CTMC. We discuss first the perfect partition case. An

alternative way of writing Eq. 3.1 in a block-structured way is

7r". (B b - diag(h") -1) + Z 7r"' . B b'3, = 0

t/:_/,

and Z_ t'. ll_nx___?,,,,:l× 1 = 1,
b
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whererr = [Tr°,..., rrlrel-1] and h = [h°,..., h trel-1} are the corresponding block-partition of 7r and of h, the

vector of expected holding times and, again, b = f/(P[1,h']) and b' = f_(PI1,K})" Assuming that the diagonal

of R, hence of every block B b, is zero, h satisfies

diag(h) = ,wsm(R)-I

Its blocks h b E/R 17-n×_'T_':''_:l, b = 0 .... , IT_I - 1, can be computed as:

These blocks can be explicitly stored to speed up the computation, instead of recomputing them at each

iteration.

Since even the blocks B _' tend to be very large for practical modeling problems, indirect iterative numeri-

cal methods based on this partition should be applied. In general, such block-iterative methods require more

computation time per iteration, but they exhibit a good rate of convergence. The iterative method starts

with an initial guess _r[0] and computes successive vectors trim], until the desired convergence is reached.

The Gauss-Seidel method can then be written in a blockwise manner as:

= 0,..., 17"¢[- 1, 7rb[m + 1] (rob[m] • B_'+Vb
k

I,-I Inl-1

_"'t,,,+ll.B"''+ _ _"'t,<-m'').h"
b' =(} b'=b+ 1

or, for the block Gauss-Seidel method with overrelaxation (SOR.) w:

rr"[m + 11 (1 - co)rrb[m] + co. (rrb[m] . B"+

I,-1 I_1-1

_"'I-,+ 11.B"',"+ E7 _"'I'< B"',").h b

6'=0 b'=5+l

For the choice of the relaxation parameter co, 0 < w _< 2, which affects the convergence rate, we refer to [20].

The analogous equations for the Jacobi method are

and, if relaxation is used,

trel-1

<,,,+,1 h"
b' =0

rr_'[., + 1} (1 - co)rr"[m] + w. (_r"[m]. Bt'+

ITeI-1

Z B"',").h',.
b' =0

For an imperfect partition, elements of the partial probability vectors ¢rt',

be additionally addressed by the corresponding index functions

b = 0,..., 1_1 - 1, have to

qat':TnxKk=t--q-k:r'_ --* {0 .... ,17- n ^k=_--_*cq-_:r,_:i_l}"
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FIG.9.1.A model of a taskiT_9 system.

The index functions _pb impose a lexicographic order.

h_ other words, for all imperfect partition, we must store the level-2 boolean vectors aid use them to test

whether certain states are reachable. However, if we accept an iteration vector @ larger than *r (but smaller

than tile _" for the entire potential state space), we can simply consider all the states described by the level-1

boolean vector; some of these are reachable and some are not, since we ignore the level-2 information (indeed,

we do not even have to store the level-2 vectors). Tile approach is similar to the original one, suggested by

Plateau-Stewart [20], but uses only a subset _- of tile potential state space: T C "]- C_7-.

We can then use the fornmlas for tile perfect partitioning and iterate disregarding whether the states

corresponding to a P[1,K] E _'_ are reachable or not. If, as in Plateau-Stewart, we ensure that any entry

corresponding to an unreachable state is set to zero in the initial probability vector Ir_'[0], the nonzero

entries of the final iteration vector rrb[rn] after convergence will be the probabilities of tile reachable states.

For our fork-and-join model of Fig. 6.1, this results in a CTMC with 18 states inore than the required 14,

but still much less than the potential 36 states.

9. Example and timing results. For the numerical coInputation we consider the distributed tasking

system described by the GSPN shown in Fig. 9.1.

It consists of S server tasks and two classes of customer tasks, C1 of class 1 and 6'2 of class 2. Five

subulodels 7nk, k = 1,..., 5, indicated by dashed boxes, interact through the four synchronizing transitions

shown in grey, representing the beginning (tbl and tb2) and tlle end (tel and t,_2) of a rendezvous between

a server task and a task of class 1 or 2, respectively. Tasks of each class run their local computation

independently, until they need to synchronize with a server task. If no server task is ready to synchronize

with them, they simply wait until one becomes ready.

The parameters specifying the stochastic behavior of this software system are the rates of each tralsition

i_1 the GSPN. We assume that the weight of every tralsition is constant, this implies that each transition

represents an independent hardware resource with single-server semantics, that is, without internal paral-

lelism (e.g., a single processing unit). Hence, we only lleed to speci .fy A:,: for each transition t,. More complex

dependencies can be accommodated by our model:

• If, for each submodel ink, tkl and t_:2 share the same hardware resource, this could be easily accom-
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modated,sincebothtransitionsarelocaltothesamemodelink. Only tim entries of l=t k wouht be

affected.

• If a transition ill subnlodel mr. represents a parallel hardware resource, this can also be reflected in

matrix R k, by appropriately scaling the rates according to the load oil that transition in each local

state.

However, the state-dependent behavior across submodels is more liInited:

• The rate of each synchronizing transition can only depend in a "product-form" fashion on the local

states of the involved submodels. For exainple, the rate of tbl can be of the form Abl • f(#(Pv_)) •

g(#(P4a)). This cammt describe the case where the work performed by tbl to initiate all the wait-

ing rendezvous (there are min{#(pla), #(/)43)} of them) can be performed in parallel on multiple

processors.

• Analogously, if the servers run on a single processor and the rendezvous actions are performed on

them, submodels ml, m._, and rna nmst be merged into a single submodel rl_12 3. Only then we can

correctly represent the processor-sharing interactions between all the transitions using the processor,

in the local matrix for this larger submodel, R 123.

• It should be noted that, in either case, tile shared use of resource needed by the synchronizing

transitions is still not represented correctly, since, again, we cammt express it in product-form

fashion. For example, the Inodel cannot represent the fact that, when #(p13) = s, #(/)43) = el,

and #(P53) = c2, there are rain{s, Cl + c2} rendezvous initiations sharing the same processor. The

net effect is that the total rate of tbl and tb2 will be twice what it should be in any global state

where they are both enabled. However, the timing of these synchronizing transitions should be

much faster than that of the local transitions in practical models. Indeed, it might be appropriate

to use immediate transitions to Inodel the synchronizations in our model. We have shown how the

Kronecker-based approach can accommodate such immediate synchronizations in [9].

The nmnerical values of the rates of the synchronizing transitions are Abl = At,2 = Ael = /_e2 = 10.0,

while the rates of the local transitions are At.1 = Ak2 = k for k = 1, 2, 3, 4, 5. We assume that there are N

tasks of each type, N = C1 = C2 = S.

In Table 9.1, we give the expected number Ek of tasks ill each submodel as a function of the initial

number of tokens N. In particular, tokens in submodels m2 and m3 represent tasks of class 1 and 2 in

rendezvous with a server, respectively. We also compute the throughput _- of the system, defined as the

expected firing rate of any local transition in ml, that is, the rate of completion of server tasks.

We now comment on the memory and execution complexity of our approach. We consider two different

structured configuration of the tasking system.

• MODs, a model consisting of five submodels ml, m2, m3, rna, and rn_.

• MOD:_, a model consisting of three submodels: a larger submodel rnl.):t obtained by merging sub-

Inodels ml, m2, and rna, phls the submodels m 4 and ms.

We compute tile steady-state solution of MODs using the conventional structured approach based on the

"actual" state space T _rCS":t_,5j, the "potential" state space 7- (CSp°t), or our approach based on a perfect

partition (PPs). For MOD3, we use either the conventional structured approach, again based on the actual

or potential state space T [o_,,,:t CSVOt_t'-_3 and 3 J, or our imperfect partition approach (IP3) based on _F. For PPs,

we partition the local state space of submodels ink, k = 1,..., 5 according to their population, through the

flmction part k = #(pkl) + #(P_2) + #(Pk3). For IP3, we partition the local state space of submodels m4 and

m.5 as for PP5, while that of submodel m123 is partitioned according to part 1"23= #(Pll) + #(P12) + #(Pla).
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N

1

2

3

4

5

6

7

8

9

E1 E2 E3 E4 Es V

0.688 0.182 0.130 0.818 0.870 0.335

1.466 0.316 0.218 1.684 1.782 0.539

2.312 0.412 0.276 2.588 2.724 0.663

3.207 0.478 0.315 3.522 3.685 0.741

4.134 0.524 0.342 4.476 4.658 0.792

5.083 0.557 0.360 5.443 5.640 0.827

6.046 0.580 0.374 6.420 6.626 0.853

7.019 0.598 0.384 7.402 7.616 0.872

8.001 0.613 0.390 8.387 8.610 0.886

TABLE 9,1

Expected population in each. submodel and throughput.

N IT_} }rl I¢I

1 4 45 1,024

2 10 693 100,000

3 20 6,060 3,200,000

4 35 36,981 52,521,875

5 56 175,383 550,731,776

6 84 689,325 4.182-109

7 120 2,341,404 2.488.101°

8 165 7,074,990 1.222.10 n

9 220 19,421,038 5.154.1011

TABLE 9,2

Size of the state space for MOD5 (k = 1,... ,5).

The global p-invariants of the tasking system are (no local p-invariants exist):

3

_-'_ :_(Pkl) -Jr- _(Pk2) q- #(Pk3) _- ,5'

k=i

#(pk_) + #(p_,2) + #(pka) = C_
k=2,4

#(pk_) + #(pk2) + #(pk:_) = c_.
k=3,5

The perfect partition of model PP5 distinguishes among the local loads #(Pkl) + #(P_.',) + #(Pk3) for each

submodel ink; this naturally correspond to the enforcement of the global p-invariants, whereas partition IPa

fails to do so, because the loads #(p21) + #(p22) + #(p23) and #(p31) + #(pa2) + #(pa3) cmmot be uniquely

determined given a class in the partition of sublnodel I,Zl23.

In tile following, we compare tile complexity of the six solutions CS_ ':t, "--sc_l'"t, PP5, CSaCt3 , _*°3¢'_qP°t,and

IPa. The size of the local state spaces T k and of the global state spaces T and T are given fbr configuration

MOD._ in Table 9.2. In tile tasking model, the two rendezvous create unreachable states (any marking where

the sum of tokens in in ral, ra_, and ma is not equal to S), so that ITI < ITI. In addition, the total

population of rn2 and rn4 nmst equal C1, and the total population of ma and m5 must equal C2. Hence, any
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1 9 45 63 144

2 45 693 1,305 4,500

3 165 6,060 14,504 66,000

4 495 36,981 107,811 606,375

5 1,287 175,383 603,855 4,036,032

6 3,003 689,325 2,739,443 21,189,168

7 6,435 2,341,404 10,552,950 92,664,000

8 12,870 7,074,990 42,742,692 3.5038.108

9 24,310 19,421,038 108,301,458 1.1766-109
TABLE 9.3

Size of the state space for MOD3 (k = 4, 5).

N nz3 I_]_ nz_ I_l,_ _(R)

1 18 3 32 3 90

2 122 6 88 6 2,376

3 530 10 220 10 27,432

4 1,810 15 440 15 199,932

5 5,230 21 770 21 1,075,158

6 13,150 28 1,232 28 4,644,900

7 30,702 36 1,848 36 16,991,520

8 65,310 45 2,640 45 54,513,576

i 9 129,360 55 3,630 55 157,241,916
TABLE 9,4

Memory requzrements.

population vector not fulfilling these global p-invariants is unreachable as well, another reason for having

IT] < 131. Analogously, the size of the local state spaces T 123 and of the global state spaces 7-, T , and _v

are given tbr configuration I_'(OD_ in Table 9.3 (7-4 and 7 -5 are as in Table 9.2).

The overall number of nonzero elements for the sparse storage of the matrices R a: and W k'J are given

in Table 9.4 tbr configurations MOD3 and MODs, under the column headings nz3 and nzs, respectively,

together with the size of 7_ in the two cases. For comparison, we also list, the number of nonzero elements in

R, which would have to be explicitly generated and stored for conventional unstructured solution methods.

One can see that a conventional solution not based on structured methods would fail for N >_ 8 because of

the memory required to store R explicitly.

Instead, the memory requirements for the local matrices are negligible with respect to the storage of

the iteration vectors. The main practical limitation of the structured approach is then memory for these

vectors i and for the state space (needed only by CS_ "t and CS_':t). The iteration vectors are of size 17-1

for CS '''t CS,_ ':_ c,_vot rot5 , . , and PPs; of size 131 for _5 and CS a (but MOD5 and MOD3 have different potential

state spaces); and of size I_VIfor IP3. Hence, the memory requirements for these vectors exceed the available

tTwo iteration vectors, Ir[rn] and _r[m + 1], are needed for the 3acobi method or for the Gauss-Seidel method when the

stopping criterion is based on a relative or absolute comparison of two successive iteration vectors. Only one vector is instead

needed with Gau_-Seidel if we use the norm of the residual *r[m] - (R - _wsm(R)) a.s a criterion.
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N

1 0.117 (131) 0.107 (31) 0.050 (117)

2 0.800 (57) 0.700 (57) 0.633 (62)

3 11.917 (86) 10.533 (86) 7.917 (77)

4 114.967 (126) -- (--) 77.867 (114)

5 821.517 (171) -- (--) 551.733 (155)

6 4,282.368 (219) -- (--) 3,097.833 (199)

7 -- (--) -- (---) 13,153.000 (245)

8 -- (--) -- (--) 47,021.100 (294)

9 -- (--) -- (--) 157,960.610 (346)

0.083 (131) 0.063 (131) 0.050 (117)

0.567 (57) 0.503 (57) 0.450 (62)

8.167 (86) 7.150 (86) 6.267 (77)

82.450 (126) 72.833 (126) 55.400 (114)

620.717 (171) 525.900 (171) 408.550 (155)

3,345.683 (219) -- (--) 2,241.867 (199)

14,721.867 (270) -- (--) 10,121.867 (245)

52,324.993 (325) -- (--) -- (--)

-- (--) _ (--) _(--)
TABLE 9.5

Time (iterations) for the numerical solution as a ]unction of N.

memory and cause the solution to fail first for CS_ °t (when N _> 4), then for CS_ '°t (when N > 6), and

finally fbr IP3 (when N _> 8), while CS_ ',t and PP5 call be solved up to N = 9. However, CS_ _t experiences

excessive paging due to the additional storage for the actual state space 7", so we provide data only for

PP5. In principle, CS_ ',t could be solved also for N = 9, but out" prototype ilnplementation uses four-bytes

(unsigned) integers to store a potential state to be searched, so it fails when ITI > 232 = 4.494.109, which

happens for N > 7, in Table 9.2.

The overall solution time has two components: the time to explore tile reachability set (only CS_ +'t and

CS_ '_ require this step) and the time for the numerical solution. Since the forlner is negligible in comparison

to the latter, Table 9.5 reports only the nulnerical solution time, in seconds, for the six approaches. We

use tile Jacobi method with a relaxation paralneter 0.9 for the conventional structured inethods, or a block-

Jacobi method for PP5 and IP3, with the same relaxation parameter. Table 9.5 also lists the number of

iterations required for the solution. In the conventional structured case, these number are the same across

the/bur models, since they differ only in the algorithmic implementation, but they otherwise perform exactly

tile same flo_ting point, operations in t.he same order on the relevant entries of the iteration vectors. Using

a block Jacobi lnethod for PP5 and IPa Inodels, both the nulnber of outer iterations and of inner iterations

would be relevant. However, for a fail' comparison with the conventiolml structured solution, we limit the

number of inner iterations to one. Increasing this number would reduce tile number of outer iterations and

result, in most cases, in a substantial speedup. The optimization of tile block Jacobi method by varying

the number of inner iterations, the relaxation, the order in which blocks are considered, or using modified

adaptive methods are beyond the scope of this paper.

The uniform distribution is the initial guess for _'[0], and the relative convergence criterion

utax _ Irr[m]i -- rr[m+ 1]il}

is used to stop tile iterations. Tile prograln is run oil a workstation with a 400 Mhz DEC Alpha 21164

processor and 256 MByte of main lnelnory. Ill all cases, the vector h is stored explicitly and all vectors are

stored in double precision. The memory requirements would be approximately halved had we used single

precision instead.

As we observed before, IP8 cannot be solved for N > 8 because of the size of the state space ]_r], given

ill Table 9.3. However, when it can be run, IP3 is the fastest method (Table 9.5). It is faster than PPs, since
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Kronecker products of only three matrices, instead of five, are required, and it is faster than CS3, because

no logarithmic search to compute tile index of reac.hable states is necessary. For N > 8, PP5 is the fastest

method, and for N > 9 it is tile only feasible method. However, using tim multilevel data structure of [8]

for tile storage of ttle actual state space T instead of ttle unsigned integer vector we used in our prototype

implenmntation, CS'_ "t and CS'_ Ct would also be feasible.

For the perfect partition PP5 and for the imperfect partition IP3 using iteration vectors of size [Tt, or for

(2_P °t
the conventional structured methods based on the potential states space, CS_ °t and --3 , it is not necessary

to explore and store the global state space. Instead, the local state spaces T k are explored and partitioned

subject to the partitioning function, and the relation 7_ is determined exploring the global state space of an

aggregated stochastic automatic network that fulfills all global p-invariants. In other special cases (e.g., the

SGSPNs [10, 11]), the submodels are restricted in such a way that the local state spaces _k can be obtained

m isolation, thus avoiding the reachability set exploration altogether, but the resulting _k might then be a

strict superset of T k. In flfll generality, though, none of these approaches might be possible, and the local

state spaces T k must be obtained by projection of the global state space on the k-th component. In this

case, we can delete the data structure used to store T as soon as the sets T k have been computed. For CS_ ':t

and CS!I ':_, we nmst instead keep T throughout the numerical solution, to compute the indexing function _.

We stress that, to achieve a fair comparison of the various approaches, we used the Jacobi method in all

cases, since it effectively allows us to ignore the rows and columns of R corresponding to the unreadlable

t_qpot t"_qpotstates. This is essential for -_a , _3 , and IP3 (if based on 3). However, any approach based on the

actual state space can also use a SOR-type iteration, which has faster convergence, although the cost per
^

iteration can be somewhat larger in this case, if spurious entries in R_\T, T need to be recognized az_d ignored

explicitly. Numerical experiments show that the overall solution time is then generally lower for CS '_t t_¢,_,,t5 , _'-'3 ,

and IP:_ (if based instead on T), but certainly lower for a (block) SOR applied to PP,5, which does not suffer

from the problem of unreachable states.

10. Conclusion. We presented a new approach for tile Kronecker-based analysis of structured continuous-

time Markov models. By partitioning the "local state spaces" of each submodel, we are able to restrict the

description of the "potential" transition rate matrix 1_ to the "actual" transition rate matrix R correspond-

ing to tile reachable states only, without having to incur a logarithmic overhead. Indeed, the partition also

allows us to avoid storing the state space altogether, thus reducing the peak memory requirements.

In addition to tile more straightforward "perfect" partition, we also introduced the concept of an "im-

perfect" partition, where the resulting state space is larger than the actual state space, but still, hopefully,

muctl smaller than the potential one. Surprisingly, tills might result in the shortest solution time, as long as

the computation fits in memory.

One substantial advantage of our approach is that it can naturally employ a block SOR method for the

numerical solution, which has then a faster convergence rate than the Jacobi method traditionally used ill

l)revious Kronecker-based approaches.

Our algorithms are implemented in the tool SNS [23]. For a copy of the program please contact the

second author.

Ill
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